Lab Seminar
In the Adaptive Learning and Optimization Lab, we hold lab seminars where one member of the lab per week presents a paper related to their research or that genuinely interests them. The point of lab seminar is to learn how to convey scientific research to like-minded individuals. Not only does the lab learn about a new topic, but the presenter also gains valuable experience while merging soft and hard skills needed to present. It is great public speaking practice and is phenomenal preparation for Q&A style conference presentations. Below is a list of papers I have presented up to this point. My presentations for these papers can be viewed from the dropdown menu of the "Lab Seminars" tab.
A Hybrid Approach to Privacy-Preserving Federated Learning
Abstract: Federated learning facilitates the collaborative training of models without the sharing of raw data. However, recent attacks demonstrate that simply maintaining data locality during training processes does not provide sufficient privacy guarantees. Rather, we need a federated learning system capable of preventing inference over both the messages exchanged during training and the final trained model while ensuring the resulting model also has acceptable predictive accuracy. Existing federated learning approaches either use secure multiparty computation (SMC) which is vulnerable to inference or differential privacy which can lead to low accuracy given a large number of parties with relatively small amounts of data each. In this paper, we present an alternative approach that utilizes both differential privacy and SMC to balance these trade-offs. Combining differential privacy with secure multiparty computation enables us to reduce the growth of noise injection as the number of parties increases without sacrificing privacy while maintaining a pre-defined rate of trust. Our system is therefore a scalable approach that protects against inference threats and produces models with high accuracy. Additionally, our system can be used to train a variety of machine learning models, which we validate with experimental results on 3 different machine learning algorithms. Our experiments demonstrate that our approach outperforms state-of-the-art solutions.
PUFchain - A Hardware-Assisted Blockchain for Sustainable Simultaneous Device and Data Security in the Internet of Everything (IoE)
Abstract: This article presents the first-ever blockchain that can simultaneously handle device and data security, which is important for the emerging Internet-of-Everything (IoE). It presents a unique concept of blockchain that integrates hardware security primitives called physical unclonable functions (PUFs) to solve scalability, latency, and energy requirement challenges and is called PUFchain. This article also introduces a new consensus algorithm called “Proof of PUF-Enabled Authentication” (PoP) for deployment in PUFchain. PoP is 1000 times faster than the well-established proof-of-work (PoW) and 5 times faster than proof-of-authentication (PoAh).
Partially Encrypted Multi-Party Computation for Federated Learning
Abstract: Multi-party computation (MPC) allows distributed machine learning to be performed in a privacy-preserving manner so that end-hosts are unaware of the true models on the clients. However, the standard MPC algorithm also triggers additional communication and computation costs, due to those expensive cryptography operations and protocols. In this paper, instead of applying heavy MPC over the entire local models for secure model aggregation, we propose to encrypt critical part of model (gradients) parameters to reduce communication cost, while maintaining MPC’s advantages on privacy-preserving without sacrificing accuracy of the learnt joint model. Theoretical analysis and experimental results are provided to verify that our proposed method could prevent deep leakage from gradients attacks from reconstructing original data of individual participants. Experiments using deep learning models over the MNIST and CIFAR-10 datasets empirically demonstrate that our proposed partially encrypted MPC method can reduce the communication and computation cost significantly when compared with conventional MPC, and it achieves as high accuracy as traditional distributed learning which aggregates local models using plain text.
Blockchain-enabled Server-less Federated Learning
Abstract: Multi-party computation (MPC) allows distributed machine learning to be performed in a privacy-preserving manner so that end-hosts are unaware of the true models on the clients. However, the standard MPC algorithm also triggers additional communication and computation costs, due to those expensive cryptography operations and protocols. In this paper, instead of applying heavy MPC over the entire local models for secure model aggregation, we propose to encrypt critical part of model (gradients) parameters to reduce communication cost, while maintaining MPC’s advantages on privacy-preserving without sacrificing accuracy of the learnt joint model. Theoretical analysis and experimental results are provided to verify that our proposed method could prevent deep leakage from gradients attacks from reconstructing original data of individual participants. Experiments using deep learning models over the MNIST and CIFAR-10 datasets empirically demonstrate that our proposed partially encrypted MPC method can reduce the communication and computation cost significantly when compared with conventional MPC, and it achieves as high accuracy as traditional distributed learning which aggregates local models using plain text.
Communication-Efficient Federated Learning with Adaptive Parameter Freezing
Abstract: Federated learning allows edge devices to collaboratively train a global model by synchronizing their local updates without sharing private data. Yet, with limited network bandwidth at the edge, communication often becomes a severe bottleneck. In this paper, we find that it is unnecessary to always synchronize the full model in the entire training process, because many parameters gradually stabilize prior to the ultimate model convergence, and can thus be excluded from being synchronized at an early stage. This allows us to reduce the communication overhead without compromising the model accuracy. However, challenges are that the local parameters excluded from global synchronization may diverge on different clients, and meanwhile some parameters may stabilize only temporally. To address these challenges, we propose a novel scheme called Adaptive Parameter Freezing (APF), which fixes (freezes) the non-synchronized stable parameters in intermittent periods. Specifically, the freezing periods are tentatively adjusted in an additively-increase and multiplicatively-decrease manner, depending on if the previously-frozen parameters remain stable in subsequent iterations. We implemented APF as a Python module in PyTorch. Our extensive array of experimental results show that APF can reduce data transfer by over 60%.
Federated Learning of User Verification Models Without Sharing Embeddings
Abstract: We consider the problem of training User Verification (UV) models in federated setup, where each user has access to the data of only one class and user embeddings cannot be shared with the server or other users. To address this problem, we propose Federated User Verification (FedUV), a framework in which users jointly learn a set of vectors and maximize the correlation of their instance embeddings with a secret linear combination of those vectors. We show that choosing the linear combinations from the codewords of an error-correcting code allows users to collaboratively train the model without revealing their embedding vectors. We present the experimental results for user verification with voice, face, and handwriting data and show that FedUV is on par with existing approaches, while not sharing the embeddings with other users or the server.
Federated Meta-Learning for Fraudulent Credit Card Detection
Abstract: Credit card transaction fraud costs billions of dollars to card issuers every year. Besides, the credit card transaction dataset is very skewed, there are much fewer samples of frauds than legitimate transactions. Due to the data security and privacy, different banks are usually not allowed to share their transaction datasets. These problems make traditional model difficult to learn the patterns of frauds and also difficult to detect them. In this paper, we introduce a novel framework termed as Federated Meta-Learning for fraud detection. Different from the traditional technologies trained with data centralized in the cloud, our model enables banks to learn fraud detection model with the training data distributed on their own local database. A shared whole model is constructed by aggregating locally-computed updates of fraud detection model. Banks can collectively reap the benefits of shared model without sharing the dataset and protect the sensitive information of cardholders. To achieve the good performance of classification, we further formulate an improved triplet-like metric learning, and design a novel meta-learning-based classifier, which allows joint comparison with K negative samples in each mini-batch. Experimental results demonstrate that the proposed approach achieves significantly higher performance compared with the other state-of-the-art approaches.
Malicious Transaction Identification in Digital Currency via Federated Graph Deep Learning
Abstract: With the rapid development of digital currencies in recent years, their anonymity provides a natural shelter for criminals. This problem resulting in various types of malicious transactions emerge in an endless stream, which seriously endangers the financial order of digital currencies. Many researchers have started to focus on this area and have proposed heuristics and feature-based centralized machine learning algorithms to discover and identify malicious transactions. However, these approaches ignore the existence of financial flows between digital currency transactions and do not use the important neighborhood relationships and rich transaction characteristics. In addition, centralized learning exposes a large amount of transaction feature data to the risk of leakage, where criminals may trace the actual users using traceability techniques. To address these issues, we propose a graph neural network model based on federated learning named GraphSniffer to identify malicious transactions in the digital currency market. GraphSniffer leverages federated learning and graph neural networks to model graph-structured Bitcoin transaction data distributed at different worker nodes, and transmits the gradients of the local model to the server node for aggregation to update the parameters of the global model. GraphSniffer can realize the joint identification and analysis of malicious transactions while protecting the security of transaction feature data and the privacy of the model. Extensive experiments validate the superiority of the proposed method over the state-of-the-art.
Personalized Federated Learning With a Graph
Abstract: Knowledge sharing and model personalization are two key components in the conceptual framework of personalized federated learning (PFL). Existing PFL methods focus on proposing new model personalization mechanisms while simply implementing knowledge sharing by aggregating models from all clients, regardless of their relation graph. This paper aims to enhance the knowledge-sharing process in PFL by leveraging the graph-based structural information among clients. We propose a novel structured federated learning (SFL) framework to learn both the global and personalized models simultaneously using client-wise relation graphs and clients’ private data. We cast SFL with graph into a novel optimization problem that can model the client-wise complex relations and graphbased structural topology by a unified framework. Moreover, in addition to using an existing relation graph, SFL could be expanded to learn the hidden relations among clients. Experiments on traffic and image benchmark datasets can demonstrate the effectiveness of the proposed method.
Federated Learning on Non-IID Graphs via Structural Knowledge Sharing
Dual Presentation
ROLAND: Graph Learning Framework for Dynamic Graphs
Abstract: Graph neural networks (GNNs) have shown their superiority in modeling graph data. Owing to the advantages of federated learning, federated graph learning (FGL) enables clients to train strong GNN models in a distributed manner without sharing their private data. A core challenge in federated systems is the non-IID problem, which also widely exists in real-world graph data. For example, local data of clients may come from diverse datasets or even domains, e.g., social networks and molecules, increasing the difficulty for FGL methods to capture commonly shared knowledge and learn a generalized encoder. From real-world graph datasets, we observe that some structural properties are shared by various domains, presenting great potential for sharing structural knowledge in FGL. Inspired by this, we propose FedStar, an FGL framework that extracts and shares the common underlying structure information for inter-graph federated learning tasks. To explicitly extract the structure information rather than encoding them along with the node features, we define structure embeddings and encode them with an independent structure encoder. Then, the structure encoder is shared across clients while the feature-based knowledge is learned in a personalized way, making FedStar capable of capturing more structure-based domain-invariant information and avoiding feature misalignment issues. We perform extensive experiments over both cross-dataset and cross-domain non-IID FGL settings, demonstrating the superiority of FedStar.
Abstract: Graph Neural Networks (GNNs) have been successfully applied to many real-world static graphs. However, the success of static graphs has not fully translated to dynamic graphs due to the limitations in model design, evaluation settings, and training strategies. Concretely, existing dynamic GNNs do not incorporate state-of-the-art designs from static GNNs, which limits their performance. Current evaluation settings for dynamic GNNs do not fully reflect the evolving nature of dynamic graphs. Finally, commonly used training methods for dynamic GNNs are not scalable. Here we propose ROLAND, an effective graph representation learning framework for real-world dynamic graphs. At its core, the ROLAND framework can help researchers easily repurpose any static GNN to dynamic graphs. Our insight is to view the node embeddings at different GNN layers as hierarchical node states and then recurrently update them over time. We then introduce a live-update evaluation setting for dynamic graphs that mimics real-world use cases, where GNNs are making predictions and being updated on a rolling basis. Finally, we propose a scalable and efficient training approach for dynamic GNNs via incremental training and meta-learning. We conduct experiments over eight different dynamic graph datasets on future link prediction tasks. Models built using the ROLAND framework achieve on average 62.7% relative mean reciprocal rank (MRR) improvement over state-of-the-art baselines under the standard evaluation settings on three datasets. We find state-of-the-art baselines experience out-of-memory errors for larger datasets, while ROLAND can easily scale to dynamic graphs with 56 million edges. After re-implementing these baselines using the ROLAND training strategy, ROLAND models still achieve on average 15.5% relative MRR improvement over the baselines.
SWIFT - Rapid Decentralized FL via Wait-Free Model Communication
Abstract: The decentralized Federated Learning (FL) setting avoids the role of a potentially unreliable or untrustworthy central host by utilizing groups of clients to collaboratively train a model via localized training and model/gradient sharing. Most existing decentralized FL algorithms require synchronization of client models where the speed of synchronization depends upon the slowest client. In this work, we propose SWIFT: a novel wait-free decentralized FL algorithm that allows clients to conduct training at their own speed. Theoretically, we prove that SWIFT matches the gold-standard iteration convergence rate O(1/ √ T) of parallel stochastic gradient descent for convex and non-convex smooth optimization (total iterations T). Furthermore, we provide theoretical results for IID and non-IID settings without any bounded-delay assumption for slow clients which is required by other asynchronous decentralized FL algorithms. Although SWIFT achieves the same iteration convergence rate with respect to T as other state-of-the-art (SOTA) parallel stochastic algorithms, it converges faster with respect to run-time due to its wait-free structure. Our experimental results demonstrate that SWIFT’s run-time is reduced due to a large reduction in communication time per epoch, which falls by an order of magnitude compared to synchronous counterparts. Furthermore, SWIFT produces loss levels for image classification, over IID and non-IID data settings, upwards of 50% faster than existing SOTA algorithms. Code for SWIFT can be found on GitHub at https://github.com/umd-huang-lab/SWIFT.
MPAF - Model Poisoning Attacks to Federated Learning based on Fake Clients
Abstract: Existing model poisoning attacks to federated learning assume that an attacker has access to a large fraction of compromised genuine clients. However, such assumption is not realistic in production federated learning systems that involve millions of clients. In this work, we propose the first Model Poisoning Attack based on Fake clients called MPAF. Specifically, we assume the attacker injects fake clients to a federated learning system and sends carefully crafted fake local model updates to the cloud server during training, such that the learnt global model has low accuracy for many indiscriminate test inputs. Towards this goal, our attack drags the global model towards an attacker-chosen base model that has low accuracy. Specifically, in each round of federated learning, the fake clients craft fake local model updates that point to the base model and scale them up to amplify their impact before sending them to the cloud server. Our experiments show that MPAF can significantly decrease the test accuracy of the global model, even if classical defenses and norm clipping are adopted, highlighting the need for more advanced defenses.